
202 FERROELECTRIC PHASE TRANSITION IN Li2Ge7Oi5 

occurs, which immediately relaxes by a reduction of 
the temperature  below To. Hence, the strong growth 
of the intensity of the inelast ical ly scattered radiat ion 
and the resulting increase of  ITDs/IBragg in the 
immedia te  vicinity of  Tc seem to be a further hint 
that the phase transit ion is associated with the soften- 
ing of an optical phonon  and that at Tca relaxational  
mode becomes of great impor tance  (Wada  et al., 
1985). Since the elastic intensity of  the 0,0,10 reflec- 
tion is domina ted  by the scattering of the Ge atoms 
and the contr ibut ions of  both Li and O atoms are 
very small ,  the decrease in the elastic intensity in this 
small  temperature  interval around Tc indicates that 
immedia te ly  at the transi t ion temperature the motion 
of  the Ge atoms also becomes important.  From the 
present experiments  it is not possible to decide 
whether  this decrease is caused by an increase of 
the Debye-Wal l e r  factor or by a displacive motion 
of the Ge atoms or how this behaviour  is connected 
to the motion of  the Li atoms. Since, however,  in 
both the para- and the ferroelectric phases the 
equi l ibr ium positions of  the Ge atoms are nearly the 
same (Iwata et al., 1987), a d isp lacement  seems to be 
less probable.  The present measurements  show for 
the first t ime that a lattice expansion in the c direction 
and a decrease of the elastically scattered intensity 

connected with an increase of  the inelast ical ly scat- 
tered intensity appears  at the phase transit ion of LGO. 
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Abstract 

A theory of  the double  kink on a dislocation that is 
free of the disadvantages of  previous models  has been 
developed.  In this theory the force of external action 
is assumed to be equal to the Peierls barrier  reaction. 

Introduction 

As concluded by Imai & Sumino (1983), none of the 
reported theoretical  models  can explain  the measured 
dislocation velocities. They used a high-power R6nt- 
gen generator for measurements  in situ of dislocation 
mobil i ty at elevated temperatures  over a wide range 
of  stresses in pure and doped  silicon crystals. In 
particular,  it was shown that a change of dislocation 
velocity with stresses for screw and 60 ° dislocation 

in highly pure crystals will be l inear over the whole 
range of the investigated stresses and that the activa- 
tion energy for the dislocation mobil i ty does not 
depend on stresses. 

According to Imai & Sumino (1983), the main  
disadvantage of  previously reported exper imental  
studies was that dislocation mobil i ty measurements  
were made  at elevated temperatures due to heating 
and cooling of a sample from room temperature to 
the temperatures of investigations. The dis t inguishing 
feature of the present work is that it overcomes the 
l imitat ions of  earlier works and makes investigations 
at a fixed temperature.  

At the present time there are two basic theories of  
dislocation propagat ion in crystals with high Peierls 
barriers: the diffusion and the obstacle theories. 
According to the diffusion theory, a full dislocation 
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velocity is determined by double-kink nucleation fol- 
lowed by expansion involving activation over the 
Peierls barriers (Hirth & Lothe, 1972). However, these 
authors stated that the formulas of their theory were 
derived intuitively. Experimental studies of the for- 
mation kinetics and evolution of excitations limiting 
the dislocation mobility in monocrystalline sili- 
con have not confirmed the Hirth-Lothe model 
(Nikitenko, Farber & Iunin, 1987). 

A significant disadvantage of the diffusion model 
is the use of the condition of thermal equilibrium for 
the kink density on dislocation (the concentration of 
kinks is independent of the external force). Only by 
ascribing the character of Brownian motion to the 
dislocation mobility did Kawata & Ishioka (1983) 
manage to bring the diffusion theory into agreement 
with experiment. However, such a theory cannot be 
true because the processes of disordered Brownian 
motion and ordered dislocation mobility cannot be 
identical. 

The quantum-mechanical model of a kink on a 
dislocation in covalent crystals (Gosar, 1977), which 
represents the double kink as a quasiparticle with an 
elastic continuum capable of tunneling between 
neighboring states, has been insufficiently developed. 
The confirmation of the conclusions of simpler 
models about the thermal nature of kink diffusion 
can hardly be regarded as an achievement of this 
theory. Great hopes are pinned on the solution of the 
s ine-Gordon equation (analog of the Frenkel- 
Kontorova model) for a discrete chain with a kink 
(Willis, EI-Batanouny & Stancioff, 1986). 

In obstacle theory, the dislocation mobility in semi- 
conductors with high Peierls barriers is determined 
by the nucleation rate and lateral motion of the kink 
(Celli, Kabler, Ninomiya & Thomson, 1963; Guyot 
& Dorn, 1967). If external stress is absent, the disloca- 
tion will be in the valley of the Peierls relief in the 
position AoBoCo (Fig. 1). When the stress ~" is applied 
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Fig. 1. Model  of  a double  kink. a is the distance between the 
valleys o f  the Peierls relief. 

in the glide plane in the direction of the Burgers 
vector, the dislocation is shifted to the position ABC 
on the slope of the barrier as shown in Fig. 1. At 
absolute-zero temperature, the dislocation mobility 
terminates at this point. In the case of elevated tem- 
peratures, the thermal fluctuations make the disloca- 
tion vibrate relative to the equilibrium position. At a 
sufficient value of thermal fluctuations, the disloca- 
tion loop A B ' C  is formed, which, on attaining some 
critical size, will not return to its initial equilibrium 
position. If the loop sizes are higher than the critical 
ones, the two kinks involved in the loop are thought 
to part. As a result, the dislocation goes to the next 
position, A"B"C", equivalent to ABC. 

Calculation of the kink nucleation energy is based 
on the finding of the extreme energy value U for the 
double kink of the A B ' C  relief from the Euler 
equation. The expression for U is usually written as 

4 - 0 0  

U= S {F(y)[ I+(dy /dx)2]~/2-F(yo)  
- -  c x ~  

- r b ( y - y o ) }  dx, (1) 

where F(y) is the energy per unit length of dislocation 
as a function o fy  and b is the Burgers-vector modulus. 
However, analysis of this theoretical model reveals 
some of its serious limitations. In this model it is 
assumed that the energy of the applied-force action 
on the dislocation increases linearly with the coordi- 
nate and is not associated with the energy expended 
in overcoming the barrier. It also follows from the 
model that the force of the external action is not equal 
to the barrier reaction and the energy of the external 
action is expended even after the dislocation barrier 
is overcome by the segment. 

The new modified model of the single kink 
(Polyakov, 1989) is free of the disadvantages of the 
previous models. The external action is equal to the 
barrier reaction and this ratio is reduced to the choice 
of proper boundary conditions, which significantly 
simplifies mathematical calculations. In this model 
the single-kink energy is 

-t-oC 

U= ~ F(y)[ l+(dy/dx)2]~/2dx.  (2) 
- o o  

From the Euler equation, one finds the shape of the 
kink relief on dislocation, x = f ( y ) ,  in the field of 
external forces, 

x = (a/'rr)2'/2{[ F( m ) / F ( 0 ) -  1 ]-I _~ sin 2 ( rryol a )} 

x (P'/2C'/4)-~ i dt / (1  - k 2 sin 2 t) ~/2, (3) 
0 

where P, C, ~o, k are the coefficients depending on 
the shift of the basic dislocation segment Yo from the 
valley of the relief and on the ratio between the 
maximum F(m) and the minimum F(0) energy per 
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unit of dislocation length F( rn) /F(0) ,  

C = 1 - MN/P2,  

P = 2D cos (27ryo/a)- [1 - c o s  2 (27ryo/a)], 

M = sin 2 (27ryo/a)-2D[I - c o s  (27ryo/a)], 

N = sin 2 (2rryo/a) + 2D[ 1 + cos (2"rryo/a)], 

D = [  F(m)+ F(0)] / [  F ( m ) -  F(0)], 

= arcsin {2C1/2p/[N tan 2 (Try~a) 

+ P(1 + C n/a)]}n/2 

k2=(1/C~/2+1)/2. 

On the basis of (3) the relief of the single kink in 
the field of external forces has been studied as a 
function of barrier height. It is also shown that the 
kink has a pseudobreak (Fig. 2). The region of the 
pseudobreak is characterized by a solution in the form 
of a meromorphic function. The dependences of the 
sizes of the single-kink regions and those of the 
pseudobreak relaxation on the barrier height and the 
value of dislocation shift from the relief valley 
(Polyakov, 1989) has been determined. 

On the basis of the developed modified model of 
the single kink (Polyakov, 1989) it is possible to 
construct a model of the double kink on a dislocation 
and from this one may calculate the activation energy 
of dislocation mobility. 

The modified model of  the double kink on a dislocation 

Since the double-kink model includes the elements 
of the single-kink model plus the interaction between 
the kinks, we can construct the double-kink model 
based on the modified single-kink model described 
by Polyakov (1989). The portions of the double kink 
(Fig. 3) from C' to D" and from A' to B" are single 
kinks (Polyakov, 1989). In Fig. 3, the linear portions 
C'b, dA', B"D" are fixed by the external force; the 
portions bB', dD' are actually single kinks with relief 
forms (Polyakov, 1989); the portions D'D" and B'B" 
are pseudobreaks. 

The minimum length of the portion B"D" corre- 
sponds to the critical length of the double kink and 
characterizes the critical energy of the interactions 
between the kinks bB' and dD'. If the applied force 
is sustained by a constant value equal to the maximum 
barrier reaction (the Peierls force), the dislocation 
(without taking into account the dynamic losses) 
freely overcomes the barrier. 

If the quantity of the external force is constant and 
its value is lower than the maximum barrier reaction, 
the dislocation will have the coordinate y between 
zero and a/4. 

The proposed model does not use such a notion 
as constant stress acting on the crystal for the follow- 
ing reasons. Firstly, if the value of the external force 
is higher than the maximum quantity of the barrier 
reaction, the excess energy will be expended in doing 
work of a different kind: dislocation, acceleration and 
other types of energy dissipation which are not taken 
into account here. Further calculations use the 
sinusoidal Peierls barrier. This means that the force 
of the external action changes from zero to a 
maximum and back to zero with the maximum being 
at Yo-- a/4. With this approach the question arises of 
basic dislocation stability in the region of a/4 < Yo < 
a/2 in which the barrier reaction reduces with increas- 
ing deviation from the stable state. In practice, the 
basic dislocation can reach any point Y0 in the region 
of a / 4 < y o < a / 2  with abrupt elimination of the 
action at the point Y0. This is possible, for example, 
for cyclic loading. Secondly, for a crystal both the 
Peierls force and Peierls stress depend on the number 
of dislocations in the glide plane and on the period 
of dislocation identity (the number of atomic planes 
parallel to the dislocation line in the glide plane with 
a nonrecurring arrangement of atoms) depending on 
the type of dislocation. Therefore, the value of the 
coordinate Yo will hereinafter be the measure of the 
external effect on the dislocation. 

In the previous schemes of calculation of the forma- 
tion energy of double kinks, the double kink was 
assumed to expand under the action of the external 
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Fig. 2. Pseudobreak (the dash-dotted line) on the single kink. The 
dashed line represents the kink profile after pseudobreak 
relaxation. 
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Fig. 3. A modified model of the double kink on dislocation. 
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force. In the proposed model, the external force 
moves the basic dislocation from a stable position in 
the relief valley to the coordinate Yo on the relief 
slope and is balanced by the reaction of the primary 
and secondary barriers. In a two-dimensional Peierls 
relief, the resulting force at the point Y0 equals zero, 
as at all the points of kink existence. Since there is 
resulting force, it has no action on the lateral shift of 
kinks. Hence the question arises about the origin of 
the force balancing the interaction between the kinks. 

In the model with a two-dimensional Peierls relief, 
the role of the frictional forces can be played by the 
barriers on defects (noises) and secondary barriers. 
In our model with a two-dimensional Peierls relief, 
lateral motion of the kink can only occur due to the 
local thermal fluctuation, unlike earlier models, in 
which lateral motion is performed by the same 
external force as migration from the valley. 

If the kinks bB' and dD' collapse, the section B"D" 
of the dislocation, for sufficient accumulated energy, 
can be converted into a chain of point defects, e.g. 
interstitials. Furthermore, these defects probably pro- 
mote double-kink formation if they are in the glide 
plane. In the case where the double-kink ejection is 
not in the plane of dislocation migration and its 
subsequent collapse, the defects appear after the dis- 
location passage in a perfect crystal. As follows from 
a simplified analysis of the model, the largest number 
of point defects and dipoles is obtained at low 
stresses, high temperatures and solid loadings. 

So, the present paper substantiates the model of a 
double kink on a dislocation that is free of the disad- 
vantages of previous models. In the new model, the 
force of external action on the dislocation is equal to 
the reaction barrier. The external force moves the 
basic dislocation from its stable position in the relief 
valley to the Y0 coordinate on the relief slope and is 
counterbalanced by the barrier reaction. In a two- 
dimensional Peierls relief, at the point Yo the resultant 
force is equal to zero as at all the points where there 
is a kink. Unlike the previous models in which the 
lateral-kink migration is caused by the same external 
force as the migration from the valley, in our model 
the lateral-kink migration is due to the thermal fluctu- 
ation over the secondary barrier. The distinguishing 
feature of the proposed model is the presence of a 
double pseudobreak on the double kink of dislocation 
in the field of the external force. 

The presence of a break on the dislocation in no 
way contradicts the continuum theory of dislocation, 
since the break region belongs to the core of the 
dislocation, which is not described by the continuum 
theory. 

In a recent study (Milchev & Mazzucchelli, 1988), 
a soliton break in the Frenkel-Kontorova model 
is mentioned. This paper analyzes an expanded 
Frenkel-Kontorova model with the interaction anhar- 
monicity taken into account. Analysis of this work 

shows that beyond some critical value of the model 
parameter (displacement) there occurs a break of the 
discrepancy dislocation. An analytical expression for 
the soliton before and after the break has been 
obtained (Milchev & Mazzucchelli, 1988). 

The formation energy of a double kink on a dislocation 
in nondoped crystals 

Let us calculate the formation energy of a double 
kink for separate portions by means of a modified 
model. Portion I in Fig. 3 characterizes the energy 
required for the creation of a segment of a single kink 
bO'. The extreme value of the kink energy U expressed 
by (2) is determined by the Euler equation (Arfken, 
1970) 

(d/dx){fo-(dy/dx)[afo/O(dy/dx)]}=O, (4) 

from which, with 

fo = F(y)[1 +(dy/dx)2] 1/2, (5) 

we obtain 

F(y) -- Co[ 1 + (dy/dx)2] ~/2. (6) 

The value of the constant Co, obtained from the 
condition dy/dx = 0 at y = Yo and x = +oo, is 

Co-- F(yo). (7) 

From (6) the expression for the slope of the single 
kink follows, 

dy/dx=[FZ(y)-F2(yo)]l/2/F(yo). (8) 

The expression for the creation energy Ua of the 
single-kink segment bO' and dO" in the case of the 
barrier of a sinusoidal form 

F(y)=F(O)+[F(m)-F(O)]sin2(rry/a) (9) 

is of the form 

x! 

U,~=2 J" {F(y)[l+(dy/dx)2]'/2-F(yo)}dx. (10) 
- o c  

Substituting (8) into (10) and replacing x by y, we 
obtain 

a / 2  

U,,=2 j" [F2(y)-F2(yo)]'/2dy. (11) 
Yo 

On numerical integration of (11) we have the depen- 
dence of the formation energy of a part of the kink 
on portion I on the migration depth Yo at different 
ratios F(m)/F(O) (Fig. 4). According to (9), the 
migration depth of the linear dislocation segment is 
proportional to the accumulated dislocation energy 
as a result of the external action. It is seen from Fig. 
4 that the energy grows with increasing barrier height 
at a constant migration depth Y0 and decreases with 
increasing energy accumulated by the linear segment. 
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This dependence may be approximated by the 
formula 

U,, = U ( m ) ( a / 2 - y o ) .  (12) 

The quantities of the formation energy of the kink 
on portions I, II and III make up the total formation 
energy of the double kink. On portion II, energy is 
expended in displacing the kink segment O'B'  from 
the starting point on the line C'A '  up to the Peierls 
barrier. This energy value U,, may be calculated by 
the formula 

Ua = do[ F ( m )  - F(y,,)], (13) 

where do is the length of the single-kink region 
(Fig. 2) investigated by Polyakov (1989) as a function 
of the barrier height and Yo. 

The minimum range length of portion III is deter- 
mined by the energy expended in displacing the seg- 
ment B"D" from the position C'A '  up to the point 
0o and is equal to 

Ur,= r'[ F ( m ) -  F(yo)], (14) 

where r' is the range length of the double-kink 
pseudobreak (Fig. 5). Equations (13) and (14) may 
be integrated to give 

Ur = r[ F ( m ) -  F(yo)], (15) 

where r=0 '0" .  The value of r is found from the 
conditions of equality of two energies of which one 
is released at interaction of the bB" and dD" kinks 
and the other is expended in overcoming the secon- 
dary Peierls barriers or barriers on defects at kink 
separation. 

In this paper we consider the influence of the 
secondary barriers because their density predomi- 
nates over the density of defects. Let the secondary 
barrier be described by the sinusoid 

F ( x ) = F ' ( O ) + [ F ( m ) - F ' ( O ) ] s i n 2 ( r r x / c ) ,  (16) 

where F'(0),  F (m)  are the minimum and maximum 
energies of the length unit of the dislocation along x, 

[ uL'&o;aJ 

| 

o o,/ a,,~ e ~  a e  a~r 

respectively, and c is the period along the x axis. Let, 
in the first approximation, F'(0) = F(0)c=a. Then the 
value of the energy U;~ = /dr expended in overcoming 
n secondary barriers is equal to 

U ~ = n [ F ( m ) - F ( y o ) ] ( a - 2 y o ) ,  (17) 

where Xo--Yo. The number n is determined from the 
equality condition of the energies U~ and from the 
interaction of kinks Q, for which the expression for 
the dislocation is given in the general form (Friedel, 
1956; Seeger & Schiller, 1966) as 

Q = - [  Gb2/87r(1 - v)](12/r) 

x [ ( l + v )  cos2~p+(1-2v)s in2~p] .  (18a) 

The following designations are used: G is the shear 
modulus; v is Poisson's ratio; r = na - 2 y o  is the dis- 
tance between the kinks; l =  a is the barrier width 
and is assumed to be constant and independent of 
the value of external pressure from the assumption 
of attraction between the pseudobreaks of opposite 
signs; ~p is an angle between the dislocation axis and 
the Burgers vector. In particular, for the screw dislo- 
cation, the expression for Qs is of the form 

Q ~ = - [ ( l + v ) / ( 1 - v ) ] ( G b 2 / 8 7 r ) ( 1 2 / r )  (18b) 

and, for 60 ° dislocation, Q6o is 

Q6, ,=- (Gb26o/32rr ) [ (4 -5v) / (1  - v)](12/r), (18c) 

where b,, b6o a r e  respectively Burgers-vector lengths 
for the screw and 60 ° dislocations. The interaction 
between the smooth kinks is replaced by the interac- 
tion between the sharp kinks (Fig. 5). Using (17) and 
(18) and taking into account the equality F ( 0 ) =  
Gb2/2 (Nikitenko, 1975), we can write the expression 
for the number of secondary barriers corresponding 
to the critical length of the double kink on the screw 

F- 

c' ' 1  ' 

8 u  

, 

L \  j ,  

Fig. 4. The dependence of the kink formation energy in portion ! 
on the barrier height external action force. Figures on the curves 
denote the F ( rn ) /F (0 )  ratio. 

Fig. 5. An equivalent scheme for the calculation of interaction 
energy between the kinks: (1) the real kink location; (2) the 
theoretical location. 
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dislocation,  n,, as 

n~= y o / a + { ( y o / a ) 2 + [ ( 1  + v ) / ( 1 -  v)] 

x [8 'n ' (1 /2-  yo/ a) ]- '  

× [ F ( m ) ~ / F ( O ) . , -  1] -I cos -2 (Tryo/a)} '/2, 

(19a)  

and for the 60 ° dislocation,  n6o , as 

? ' / 6 0  = Yo/a + {(Yo/a) 2 

+ [ ( 4 - 5 v ) / ( 1 -  v)] /327r(½-Yo/a)  

×[  F(m)6o /F(0 )6o -  1] -l cos- 2 (,n.yo/a)},/2, 

(19b) 

where F ( m ) , ,  F (0 ) ,  and F(m)6o,  F(0)6o are the 
max imum (m)  and min imum (0) energies of  the screw 
(s) and 60 ° (60) dislocations.  

It follows from Fig. 6 and (19a, b) that the critical 
length of  the double kink increases monotonical ly  
with both increasing barr ier  width at a certain value 
of  external action and increasing external action at 
a certain barr ier  width. However ,  the condit ion of 
the existence of  a secondary  relief is imposed on the 
thus calculated critical length of  the double kink. For 
example,  at Yo = 0.15 (Fig. 6) the critical length of  the 
double kink on the screw dislocation calculated by 
(19) is not equal to an integral number  of  secondary 
reliefs. In such cases, the s teady double-kink forma- 
tion is achieved if the kink covers the largest total 
number  of  secondary  reliefs. If  yo=0.15 ,  the total 
number  of  secondary  reliefs characterizing the s teady 
state of  the double kink is 6. The reasonable  critical 
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Fig. 6. The critical length of the double kink on screw (1) and 

60 ° (2) dislocations at F(rn)/F(O)= 1.01. 

length of the double kink as a function of Yo is marked  
in Fig. 6 by a step curve. At certain Yo the energy 
U~(s) expended  in overcoming the n, secondary  
barriers corresponding to the critical length of  the 
kink on the screw dislocation can be determined from 
(17), 

U~ ( s ) = 2n,F( O),a[ F(  m )~/F(  0 ), - 1 ] 

x (½-Yo /a )cos2 (Tryo /a ) ,  (20a)  

where 

n = 5 ,  O< yo<  O.105a, 

n = 6 ,  O.105a< yo<O.17a, 

n = 7 ,  O.17a<yo<O.21a,  

and U~(60) for the 60 ° dislocation is 

Ua ( 60 ) = 2 n6oF( 0)6oa[ F(  m )60/F( 0 )60 - -  1 ] 

× (½ - Yo/a ) cos 2 ( 7ryo/a ) 

at 

n = 3 ,  0 < yo<  0.065a, 

n = 4 ,  O.065a<yo<O.18a,  

n = 5 ,  O.18a<yo<O.245a,  

(20b) 

Then the expression for the energy of  double-kink 
(dk) format ion on the screw dislocation, Udk(S), may 
be written as 

Ud~(s )  = Uo(s)+ U~(s) 
a / 2  

= 2 ~ [ F 2 ( y ) ~ -  F2(yo)~] '/2 dx  
Yo 

+ 2n,F(O),a[ F (m)5 /F(O) ,  - 1 ] 
1 x ( ~ - y o / a )  cos 2 (rryo/a). (21a)  

Udk(60) for the 60 ° dislocation is 

Udk(60) = U,,(60) + Ua(60) 

a / 2  

= 2 J [F2(Y)6o - F2(Yo)6o] '/2 dx  
Y o  

+ 2n6oF(O)6oa[ F( m)6o/F(0)6o - 1] 

x ( ~ - y o / a )  cos 2 (Tryo/a) (21b) 

and Umsr is the energy of  kink migrat ion over the 
secondary barrier,  equal to Ua at n = 1 and Yo. 

It may be seen from Fig. 7 that  the values of  the 
energies of  double-kink format ion  for both screw and 
60 ° dislocations decrease unevenly with increasing 
external action. Thus it is noted that an impor tant  
feature of  the new model  of  a double kink on disloca- 
tion is the uneven drop of  the double-kink forma- 
tion energy depending on the monotonic  increase 
of the external force action for both 60 ° and screw 
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dislocations.  This fact is attributed to the presence of 
a secondary Peierls relief. 

From the new model  of  a double  kink an analyt ical  
expression has been obta ined for the double-kink 
formation energy depending  on the critical double- 
kink length, the value of  dislocation migrat ion from 
the Peierls relief valley and the Peierls energy. 

Concluding remarks 

A model  of  a double  kink on dislocation that is free 
of  the disadvantages of  the previous models  has been 
substantiated.  The dis t inguishing feature of  the pro- 
posed model  is the presence of  a double pseudobreak 
on a double  kink on dislocat ion in the external force 
field. 

A feature of the new model  is the uneven decrease 
in the double-kink format ion energy depending  on 
the monotonic  increase of  the external action for 
both 60 ° and screw dislocations.  This is due to the 
periodici ty of  the secondary Peierls relief. 

0,/2 

a /  

o, a6 

o, ab 

a,0e 

a f/o) 6a 

N 
\ 
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0 & 0,3 a4 a,s 
(b) 

Fig. 7. The activation energy of double-kink formation Udk (curve 
1) and kink migration Urns r (curve 2) of (a) screw and (b) 60 ° 
dislocation versus the external force at F(m)/F(O)= 1.01. 
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